If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-36y=0
a = 2; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·2·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*2}=\frac{0}{4} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*2}=\frac{72}{4} =18 $
| 18-18v=9-5 | | -4x+3=12x-5 | | 20-x=-180 | | x-1.7=-2.3 | | 4/3(-5x+2)=-4 | | 5x+36=9-4x | | 2.1(2.3+2.1x)=11.65+. | | 1s=1s | | -118-2x=167+13x | | (3x+26=6x-13,x) | | -9y=-12y+9 | | -6-3(3+6p)=18-7p | | 4p/5+9/5=1 | | 4+2x+3=5x+10 | | -12v-58=-10(10v-12)-2 | | Y-62=2/3y | | 9g=-12+5g | | 8t^-10=-82 | | (1-i)^3=0 | | -8+2/3*m=12 | | 4p/9+62/9=6 | | 9x9=5 | | -10-c=10+2c+10 | | 9-3(x-2)=×-1 | | 4(c+6)=36 | | 512/16=z/8 | | 6p/9+21/9=1 | | -3x—21=21 | | 5x+5=6-(8x-7) | | 3+(2)+4y=17 | | 2/15=h/5 | | -9g-20-20=10-19g |